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Abstract - -  The constructal theory of the origin of geometrical form in natural f low (open) systems began with the discovery 
that, contrary to the established view, the tree network can be deduced from a single principle: the geometric minimization of 
resistance in volume-to-point flow. This article reviews a series of developments that extend the constructal law over naturally 
shaped flow phenomena other than the tree. Examples include the proportionality between width and depth in rivers of all sizes, 
the nearly round cross-sections of all blood vessels and bronchial passages, the dendritic shape of the snowflake, the pattern 
formed by cracks in a solid that shrinks upon cooling or drying (e.g., mud cracks), the onset and multiplication of rolls in B~nard 
convection, the transition (first eddy) and stepwise growth of all turbulent mixing regions, and the very existence of economics 
spatial structure (minimal cost routes between an area and one point). ~) Elsevier, Paris. 

constructal therory / tree network / minimization of resistance / economic optimization / transition to turbulence / B~nard rolls / 
shape of the cross-sections 

R~sum~ - -  Comment la nature prend forme : extension de la th~orie constructale aux r~seaux de canalisations, aux rivi~res, 
~, la turbulence, ~ la convection naturelle, aux crevasses, aux r~seaux dendritiques et ~ I'~conomie. La th~orie constructale 
sur I'origine des formes g~om~triques dans les syst~mes d'~coulement naturels commence avec la  d~couverte du fait que, 
contrairement ~. un point de rue ~tabli, les r~seaux arborescents se d~duisent d'un principe simple : celui de la minimisation 
g~om~trique de la r~sistance ~ I'~coulement ~ partir d'un point, dans un volume donn~. Dans cet article, on passe en revue une 
s~rie de d~veloppements qui permettent d'~tendre la Ioi constructale, relative ~, la forme des ~coulements naturels, ~ d'autres 
ph~nom~nes, non arborescents. Les exemples pr~sent~s incluent la proportionnalit~ entre largeur et profondeur des rivi~res de 
toutes taiiies, ta forme approximativement circulaire des vaisseaux sanguins et bronchioles, la forme dendritique des flocons de 
neige, ies motifs des craquelures qui apparaissent dans les solides en refroidissement ou Iors du s~chage, I'apparition, puis la 
multiplication des cellules de B~nard en convection, la transition vers la turbulence, puis sa croissance et, enfin, i'existence d'une 
structure spatiale des ~conomies (itin~raire ~ co6t minimum entre une region et un point). © Elsevier, Paris. 

th~orie constructale / r~seaux arborescents / minimisation des r~sistances / optimisation ~conomique / transition vers la 
turbulence / convection naturelle / forme des sections droites 

1. CONSTRUCTAL THEORY 
OF ORGANIZATION IN NATURE 

This article is an invi ta t ion to th ink freely about  a 
phenomenon tha t  is so prevalent  tha t  it is being taken 
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for granted:  the macroscopic shapes and s t ructures  tha t  
generate  themselves everywhere in nature  [1]. I t  is an 
invi ta t ion to th ink about  the  great  puzzle tha t  has been 
with us from the beginnings of science: "From what  
principle can geometrical  form be deduced?." Democri tus  
(c. 460 c. 370 BC) a t t r ibu ted  na tura l  geometrical  form 
to "chance and necessity." The doctr ine  of chance 
(nondeterminism) has s tayed with us ever since, not  
as an explanat ion of na tura l  form generat ion but  as an 
admission of our own inabil i ty to predict  it. 
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Let us start with a few empirical observations. 
Geometric form is generated in natural systems that 
are internally 'alive' with flows and driving gradients 
(e.g. temperature and pressure). Such systems are not 
in equilibrium internally. Second, the geometric forms 
that our minds recognize and sort out are not many. 
Three shapes cover most of the world that is around 
us and inside ourselves: the tree-shaped flow network, 
the round shape of the cross-section of duct flow, and 
the watermelon-slice shape of the cross-section of open 
channel flow. Third, natural systems that have the same 
shape are not identical. For example, two bronchial trees 
are never identical. Similarly, two cuts made across a 
blood vessel never reveal the perfect, mathematical 
circle. The point is that when presented with one image 
from the endless diversity of natural flow shapes, the 
mind knows this image and categorizes it as a tree, 
round or watermelon-slice shape. The tree may be hard 
to describe, but when we see it we know it, and we call 
it 'tree'. 

These few natural shapes are truly everywhere, in 
both aninmte and inanimate flow systems. If a single 
principle - -  a simple s t a t e m e n t -  is responsible for the 
generation of billions and billions of such shapes, then 
that law manifests itself everywhere, and bridges the 
gap between the scientists' physical and biological fields 
of vision. 

Constructal theory is about the physics principle 
from which geometric form in natural flow systems can 
be deduced. This line of inquiry began accidentally 
in engineering, with a 1997 analytical paper on the 
conductive cooling of a small electronic package (a 
heat generating volume) by using a point-size heat 
sink [2]. I proposed the fundamental problem of how 
to connect one point to an infinity of points. In the 
electronic package, the volume is fixed, and the heat 
generating material has a low thermal conductivity (k0). 
A small amount of a second material--one with much 
higher thermal conductivity (kp)--is  to be distributed 
through the ko material such that the overall volume- 
to-point resistance is minimal. The accidental discovery 
is that by invoking consistently a single principle--the 
minimization of volume-to-point resistance--we find 
that the kp material fills the links of a tree network 
that is completely deterministic. In this solution even 
the integer 2 (bifurcation, pairing) is an optimization 
result, not an assumption. 

These features can be rediscovered in the tree net- 
works that occur naturally (e.g., fluid flow, electricity, 
streets) [t]. Constructal theory and its first applications 
were reviewed by Bejan and Tondeur [3] in the alter- 
nate context offered by the principle of equipartition 
[4] or optimal allocation of hardware, as a route to 
thermodynamic optimization subject to constraints. A 
progress report on constructal tree networks is given 
in section 8. The following is a brief review of several 
additional directions in which constructal theory has 
been extended. 

2. N A T U R A L  CHANNEL A N D  D U C T  
CROSS-SECTIONS 

To predict the shape of the river cross-section 
may appear difficult, if we think of the real world 
and the many uncertainties of river flow and channel 
development. Turbulent flow, secondary flow (cross- 
circulation), meanders, bed erosion, sediment transport, 
time, and the geological characteristics of the terrain 
all play important roles, which have been amply 
documented in the river morphology literature. These 
uncertainties are responsible for significant variations 
in channel cross section from one river to another, or 
along the same river. They can also be invoked when 
observing that the ratio between river width (W) and 
the maximum depth (d) is not a constant: there is some 
scatter in the W/d data. 

The classical explanation for the shape of the channel 
cross section recognizes the complicated, developing 
nature of the river bed [5]. An equilibrium was envisaged 
between the forces acting on a ground particle at rest on 
the bottom of the channel. This equilibrium condition, 
however, is insufficient and must be complemented by 
axt-hoc assumptions concerning the distribution of shear 
stress (or bottom velocity) with depth. After numerical 
integration, this approach yields a bottom shape that 
is roughly sinusoidal, in which W and d are two 
undetermined constants. In sum, the equilibrium theory 
of the river bed does not explain the proportionality 
between W and d. 

This problem becomes much easier if we focus on 
an open channel cross section with an upper straight 
segment, W (the shear-free surface), and the rest of 
the perimeter, p (the bottom), as shown in the table. 
The shape of the bottom curve of length p is not 
specified. The channel cross-sectional area A, i.e., the 

TABLE 
Optimized cross-sectional shapes of open channels. 

Optimal Shape (W/d)opt Pmin/A 1/2 

Rectangle I A 2 2.828 

Triangle ~ 2 2.828 

Parabola 

Ci~le 

2.056 2.561 

I W "l 2 2.507 

p 
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a~ea enclosed by the W segment and the p curve, is fixed. 
When the flow is turbulent and the bottom sufficiently 
rough, the skin friction coefficient along the bottom is 
nearly independent of flow rate. This means that the 
minimization of the flow resistance is equivalent to the 
statement: find the cross-sectional shape that has the 
minimum perimeter p, which along with W encloses the 
area A. 

The solut ion--the optimal image--has  two parts, 
i.e., two degrees of freedom. First, the optimal shape 
of the p curve is delivered by variational calculus, and 
it is the arc of a circle [1]. There is an infinity of 
such cross sections, depending on the size of the ratio 
W . A  -1/2. In one extreme, when this ratio is zero, the 
cross section is a complete disc, and represents the well 
known solution for the duct (blood vessel, bronchial 
tube). The second degree of freedom is represented by 
W . A  -~/2, or by the ratio W/d.  The optimal value of 
the latter is 2. In conclusion, the optimal shape of 
the channel cross-section can be derived from the same 
principle of global optimization subject to constraints as 
in the other natural flow shapes reviewed in this article. 

It is interesting that in the optimal shape (half 
disc) the river banks sink vertically downward into the 
water, and are likely to crumble under the influence of 
gravity and erosion (drag on particles). This effect will 
decrease the slope of the river bed near the surface and, 
depending on the bed material, it will increase somewhat 
the slenderness ratio W/d.  There remains plenty of room 
for the classical equilibrium theory of the river bed, in 
fact, its territory remains intact. Equilibrium theory 
begins where constructal theory leaves off. 

If we do not know the variational calculus solution 
for the optimal bottom shape (arc of circle), we can still 
assume a shape (e.g., rectangle, triangle) and optimize 
its W / d  ratio for minimum resistance. The rightmost 
column of the table shows that in practical terms these 
alternate shapes have nearly the same resistance as the 
best shape. This high level of agreement accounts for 
the scatter in the W / d  data on river bottom profiles, 
that is, if global thermodynamic performance is what 
counts, not local details. Yes, there is uncertainty in 
the actual shapes that we see in nature. Important 
is that there is very little uncertainty in anticipating 
global characteristics such as shape (e.g. round vs. tree), 
optimal performance, and basic mechanism. Additional 
support for this view is provided by the billions and 
billions of internal ducts found in plants and animals. 
Ducts with imperfections (flat spots) perform almost 
the same as purely round ducts [I]. 

3. TURBULENCE: 
THE FIRST, SMALLEST EDDY 

In every natural tree example [1] the flow has the 
property to develop structure when it can exist in 

two regimes, not one. Each flow path starts from the 
elemental volume with a portion with high resistivity 
(diffusion), and continues with several portions with low 
resistivity (streams) at larger scales. Turbulent flow is 
notorious for combining the same two regimes viscous 
diffusion and streams (eddies) - -  therefore, it must be 
covered by the constructal law of structure generation in 
nature. To see how, let us consider the sudden shearing 
motion between two semi-infinite fluid reservoirs, with 
the velocity U~ measured between them. We see this 
motion better in a frame that rides at half speed along 
the interface (y = 0): The upper fluid rides to the right 
at U~/2  and the lower fluid moves to the left with the 
same speed, as shown in figure 1. 

Immediately after t = 0, the interface is thickened by 
a laminar shear layer with error-function profiles on both 
sides of the y = 0 plane. The instantaneous thickness 
of this layer (D) is a classical result of Stoke's first 
problem. The effective distance of viscous penetration 
(thickening, mixing) is marked by the knees in the 
velocity profile, which are located at y ~ +2(ut)  1/~, 
where u is the kinematic viscosity of the fluid. In the 
present case, viscous diffusion propagates on both sides 
of the y = 0 interface, therefore D ~ 2 y ,~ 4 (u t) 1/2. 

The question suggested by the constructal principle 
is this: how can the flow (velocity nonuniformity) spread 
itself over the entire space in the shortest time possible? 
The laminar regime is effective only in the beginning 
when dD/d t  is large. As time increases, the diffusive 
swelling of the mixing region slows down because d D / d t  
decreases as t -1/2. 

To maintain the highest rate of growth possible, the 
system searches for a second regime. In shear flow, the 
second regime is eddy formation, or shear layer roll up. 
The vertical motion of this organized motion is constant 
(U~/2), because the peripheral speed of the roll is set 
by the motion of the two reservoirs. During one roll- 
up the shear region swells to a thickness equal to the 
diameter of the first roll. The latter is approximately 
equal to AB ~ 2D, where .~B is the wavelength of 
buckling (or neutral) deformation of the viscous shear 
layer of thickness D [6, 7]. In other words, the mixing 
thickness increases from D to 2D during the time 
required by one roll-up, tB ~ A B / ( U ~ / 2 ) ~ 4 D / U ~ .  
Comparing these competing regimes we conclude that 
the rate of lateral growth through eddy formation is 
(2 D - D)/ tB ~ Uo~/4, whereas the viscous swelling rate 
is d D / d t  ~ 2 (u/t) 1/2 ~ 8 u /D.  The most rapid growth 
occurs when diffusion is followed by eddy formation at 
a time when the viscous growth rate is just outpaced by 
the eddy growth r a t e - - tha t  is, when Uo~/4 ~ 8 ~,/D, or 
more appropriately: 

D U~/u  ~ O(10 2) (1) 

This local Reynolds number criterion predicts the 
transition to turbulence in all known configurations 
[7], where the classical data are a collection of many 
transition constants that vary in order of magnitude 
from a Reynolds number of order 10 2 in jets and wakes, 
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(a) 
Figure I. The maximization of spreading rate (a), the first eddy, and the subsequent stepwise growth of a turbulent shear-flow 
mixing region [1]. 

to a Rayleigh number of order l0 s in natural convection 
vertical boundary layer flow. The latter is anticipated 
by the theoretical statement that at transition the 
Reynolds number must be of order 102 , where the 
Reynolds number is based on the local thickness and 
local longitudinal velocity of the flow. 

The first roll-up is the smallest e d d y - - t h e  elemental 
volume of the subsequent constructs that will make up 
the turbulent flow field. The elemental volume is ruled 
by a time balance: the time of viscous diffusion matches 
the time of rolling once. This balance is analogous to 
the equipartition of driving force [3, 4] in the elemental 
volume of constructal trees [1]. The size of the smallest 
eddy is such that its Reynolds number based on diameter 
and peripheral velocity is of order 102 . This purely 
theoretical result establishes order in contemporary fluid 
mechanics, where the smallest eddy is thought to have 
a Reynolds number of order 1. 

Dramatic support for the theoretical size of the 
first eddy is offered not only by the overwhelming 
record on turbulent flows, but also by the massive 
record of observations on the swimming of fish. Small 
fish flap their fins and hold their bodies straight 
when the Reynolds number is less than O(102). When 

the Reynolds number exceeds O(102), fish swim by 
undulating their bodies. Now we know why. The 
swimming of fish visualizes the shape and structure 
of the surrounding medium. The fish had to acquire 
the shape of its medium in order to minimize its 
own resistance to flow. This is the first time that the 
transition in fish swimming has been predicted based on 
pure theory, and is a most unexpected and rewarding 
result of constructal theory. 

Beyond the first eddy formation event (D1), the 
flow continues to expand in s teps-- in  assemblies, or 
constructs--by rolling and forming eddies. Each step 
leads to the doubling of the mixing region (cf. Z~B ~ 2 D ) .  
Viscous diffusion does not have time to act (to compete 
with rolling) over larger distances such as D2, D3, 
and so on. The outer boundaries of the mixing region 
are extended now by the second flow regime: streams 
(eddies). In a frame of reference attached to one of the 
fluid reservoirs, the mixing region grows stepwise as a 
stack of geometrically similar building blocks [6, 7]. In a 
volume averaged description the mixing region appears 
to have the shape of a wedge, i.e., a constant growth 
rate. The analogy with the other structures deduced 
based on constructal theory is now complete. 
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4. BI~NARD CONVECTION 

Consider a horizontal layer of single-phase fluid 
heated from below, which is characterized by the 
thickness H and the bot tom excess temperature is 
AT = T h -  To. In line with the access-optimization 
principle of constructal theory, we search for the 
fastest (most direct) route for heat transfer across 
the fluid layer [1, 8]. To start with, the classical 
solution for time-dependent thermal diffusion near a 
wall with a sudden jump in temperature (AT) is 
(T - Tc) /AT = erfc[y/2 (~ t) l/2], where Tc is the far-field 
temperature in the fluid. The effect of the temperature 
jump is felt to the distance y / 2 ( a t )  1/2 ~ 1, which 
represents the knee in the temperature profile. The 
time needed by this heating effect to travel by thermal 
diffusion the distance H is to ~ H2 / (4a ) .  The time to 
corresponds to the heating of the entire layer (y ~ H). 
The factor 4 in the denominator of the to expression 
arises from the geometry (shape) of the time-dependent 
temperature profile. 

Pure conduction continues to be the preferred 
heat-transfer mechanism, and the fluid layer remains 
macroscopically motionless as long as H is small enough 
that  to is the shortest time of transporting heat across 
the layer. The alternative to conduction is convection, 
or the channeling of energy transport  on the back of 
fluid streams. The question is whether the convection 
time (tl) across the layer H is shorter than to. The 
convection time is tl ~ H/v,  where v is the vertical 
velocity of the fluid (the peripheral velocity of the roll). 

To evaluate the v and tl scales, we rely on scale 
analysis [7]. First, we note that  the effective diameter 
of each roll is of order H, but smaller, for example, 
HI2. When the roll turns, an excess temperature of 
order AT~2 is created between the moving stream and 
the average temperature of the fluid layer. This excess 
temperature induces buoyancy (modified gravitational 
acceleration) of order g 3 A T / 2 .  The total buoyancy 
force that  drives the roll is of order (g t3 AT/2) p (H/2) 2. 
When the Prandt l  number is of order 1 or greater, the 
driving force is balanced by the viscous shearing force 
~r H/2, where the shear stress scale is ~- ~ pv/(H/4) .  The 
force balance buoyancy-friction yields the velocity scale 
v ~ g 3 AT H2/(16 u) and the corresponding convection 
time scale tl ,,~ 16u/(g 3 A T  H). 

To see the emergence of an opportunity to optimize 
the geometric features of the flow pattern, imagine that  
H increases. As the system grows, the thermal diffusion 
time to increases in accelerated fashion, whereas the 
convection time t~ (a property of the H system, 
even if quiescent) decreases monotonically. Setting 
tl <~ to we find that  the first streams occur when 
Rail ~ O(102), where Ran = g / 3 A T H 3 / ( a v )  is the 
Rayleigh number. The exact solution for this critical 
condition is Ran = 1708; in other words, Ran = O(103). 
The factor-of-6 error in the result of scale analysis is 
understandable (and unimportant)  because it can be 

at tr ibuted to the imprecise geometric ratios (factors of 
order one) introduced en route to determining the to 
and tl scales. What  is important  is that  the predicted 
critical R a i l  is a constant considerably greater than 1. 
This constant is a conglomerate of all the geometric 
ratios of the roll-between-plates configuration. Had we 
neglected the geometric reality of how the rolls fit, or the 
geometric fact that  4 belongs in the denominator of the 
to expression, we would have obtained only R a i l  "~ 1, i.e. 
the correct dimensionless group but not the fact that  the 
critical Rail number represents geometry (structure). 

When convection occurs, there are two heat-transfer 
mechanisms, not one. Each roll characterized by to ~ tl 
is an elemental system in the sense of constructal theory. 
The equipartition of time to ~ tl is the analog of the 
equipartition of temperature drop across an optimized 
element of the heat generating volume of constructal 
theory. Conduction, or thermal diffusion, is present and 
does its job at every point inside the elemental volume. 
Superimposed on this volumetric heat flow is an optimal 
pat tern of convection 'streets'  that  channel the imposed 
heat current faster across H. 

The usual terminology for 'faster' in the field of 
heat transfer is to say that  the onset of convection 
is followed by an increase in the overall Nusselt 
number, Null = q " H / ( k A T ) .  If we fix the uniform 
heat flux q" in B~nard convection, we see again that  the 
optimization of the heat flow pattern at the elemental 
level leads to a smaller overall AT, and thus a larger 
NUll. The geometric minimization of the temperature 
difference across H continues to manifest itself as 
H (or Rail) increases, as convection becomes more 
intense. In this case, geometric optimization means the 
selection of the number of rolls that  fill a layer of 
fixed horizontal dimension L, or the selection of the roll 
aspect ratio. This principle of natural optimization of 
the flow geometry is known as the Malkus hypothesis 
and was prop__osed heuristically in the usual context of 
maximizing q" when AT is imposed [9]. 

Constructal  theory has also been extended to B6nard 
convection in porous layers saturated with fluid in the 
Darcy flow regime [8]. The geometric structure and heat 
transfer rate in B~nard convection at Rail values higher 
than critical has been predicted in amazingly simple and 
direct terms (analytically) by continuing to apply the 
constructal principle of access optimization for internal 
currents [8]. The analytical method is illustrated for 
crack patterns in § 6. 

5. DENDRITIC CRYSTALS 

The dendritic crystals that  form during rapid 
solidification are another wide class of naturally ordered 
solid shapes. In 1611 Kepler drew attention to the 
shapes, numbers, and geometric similarities exhibited 
by snowflakes [10]. In this century, the study of 
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dendritic crystals has grown into a major field that deals 
mainly with two aspects: the shape and the growth of 
dendritic crystals. Not questioned was the necessity of 
the dendrite. Why should the needles be necessary? 

Consider the solidification of a single-component 
substance, and assume that the liquid and solid phases 
have the same density. This means that there is no liquid 
motion in the vicinity of the solidification front: what 
flows is heat, which starts from the solidification front 
and diffuses into the liquid. The solid phase is isothermal 
at Ts. Sufficiently far from the solidification front the 
liquid is metastable (subcooled) at the temperature 
T~¢ (> Ts). Solidification starts at t = 0. 

Why Plane? Kepler asked the first fundamental 
question about the geometry of the snowflake: why six 
needles? This question was answered after the geometry 
of the molecular arrangement of ice became known. An 
equMly important question is this: why is the snowflake 
plane? This question cuts to the heart of the meaning 
of 'rapid' solidification. 

The classical solutions for unidirectional solidifica- 
tion in plane, cylindrical, and spherical geometries 
show that in all cases the solid thickness (R) and 
the thickness of thermal diffusion into the liquid (rl) 
increase as (at)  1/2, where a is the thermal diffusi- 
vity of the liquid. The three geometries are quite dif- 
ferent with regard to their ability to fill the space 
with solid: specifically, (solid volume)/(t0tal volume) 

(R/r1) < 1 (plane), ~ (R/rl)  ~ << 1 (cylinder) and 
(R/rl)  3 < < <  1 (sphere). Clearly, the most effective 

arrangement for solidifying a volume in the shortest 
time is the planar one. That  snowflakes are plane is 
overwhelming evidence that the maximization of the 
speed of volumetric solidification is an integral part of 
the nature of the process. 

Why needles? The preceding observation brings us to 
the most important problem, which is that  of predicting 
the necessity of the dendrite. Let us follow, in time, the 
growth of the snowflake beginning with its birth (t = 0) 
at a point-size nucleation site (figure 2). Molecular 
structure and surface-tension-based stability arguments 
indicate that ice needles will begin to grow with the 
velocity U (constant) in the six directions shown. But 
this is only one heat transfer regime of the solidification 
process that just started. At the same time (t = 0), 
the temperature of the nucleation site jumped to Ts 
(> To~) and triggered a spherical wave of thermal 
diffusion (warmth) the radius of which increases as 
rl ~ 2(c~t) 1/~. The initial speed of propagation of the 
liquid heating effect is inf ini te-- that  is, larger than any 
constant speed (U) that the tip of the needle might 
have. In time, the speed drl/dt  decreases as t -1/2 and 
is eventually overtaken by U. 

Figure 3 shows how the warmed liquid sphere and the 
needle length grow in time. A critical time tc is reached 
when the needle length L overtakes the radial length 
scale of the warmed liquid, Utc ~ 2 ( a t c )  1/~, which 

a( b 

I i i i 

0 t c 2t c 3t c t 

Figure 2. The formation of new needles after each time 
interval to, as the repeated manifestation of the mechanism 
shown in figure 3 [1]. 

radial 
growth needle tip 

L= Ut 

~ _  warmed liquid sphere 
_. r 1- 2(at) 1/2 

I 

0 tc "t 

(a) 

0 s L L I 

0 tc 2tc 3to 

(b) 
Figure 3, The simultaneous growth of the needle and the 
warm liquid sphere, and the time interval tc after which the 
process is repeated. 
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yields tc ~ 4 a/U 2. Note that  figure 3a is completely 
analogous to figure 1. At times slightly greater than 
to, the needle of length Ut~ just sticks its tip out 
of the warmed liquid sphere. The tip is once again 
surrounded by isothermal subcooled liquid from the 
half-space that  lies in front of it. The situation at t ~ t~ 
is the same as that  at t = 0, except that  the new 
nucleation site (the needle tip) can send new needles 
only forward, because the trailing half space is already 
warmed and/or  solidified. In conclusion, at t ~ to, 
each tip serves as nucleation site for three forward- 
leaning fresh needles. There is no difference between 
the ages of these fresh needles. Because of the 60 ° 
angular symmetry, however, the middle needle (b) in 
figure 2 looks like a continuation of the original needle, 
and, consequently, the other two needles (a, c) look like 
'branches'. 

From t ~ to until t ~ 2to, the new generation of 
needles experiences the 'growth inside the warm liquid 
sphere' process, that  we saw between t = 0 and t = to. 
One difference is that  the liquid spheres of the side 
needles (a, c) interfere eventually with the spheres of 
the side needles of the adjacent original directions. 
Consequently, at t ~ 2 tc all the side needles become 
suffocated by the warm (saturated) liquid environment, 
and their needle-like growth ceases. Each middle needle 
(b) however, pierces its warmed liquid sphere and 
generates another group of three forward-leaning fresh 
needles. This third generation and its fully grown version 
at t ~ 3 tc are illustrated in figure 2, which is based on 
repeating the argument of figure 3a three times, as 
shown in figure 3b. 

With this, the task of predicting the architecture 
(existence) of dendrites has been accomplished. Needles 
are necessary for the same reason that  eddies are 
necessary: to provide internal paths such that  entire 
volumes approach internal equilibrium in the shortest 
time possible. 

Imagine that  you are a visitor from another planet, 
someone who knows biology but not thermophysics. 
You may describe figure 2 as follows. The organism is 
born at the time t = 0, and its innermost morphology 
(e.g. the number 6) is a reflection of information stored 
at the molecular level. The organism grows that  is, 
expands into its surroundings. The growth is very fast 
when the organism is young, and it slows down with 
age. There comes a t i m e - - t h e  time of death, t o - -  
when the organism becomes disposable. The fossil (solid 
dendrite) is suggestive of the flow that  was present in 
the living organism (heat flow). Continuity is assured 
i~ the form of several offspring, which repeat the life 
cycle of the original organism. The offspring may or 
may not be attached to their ancestor. In sum, the 
periodic regeneration and multiplication of the organism 
is an expression of the natural tendency toward internal 
geometry for optimal (or fastest)" access for internal 
currents. 

6. CRACKS IN SOLID SURFACES 

The formation of cracks in solids is an old and busy 
field that  so far has been dug mainly by materials 
scientists, physicists, and chemists. The challenge that  
persists is to predict the origin of such p a t t e r n s - - t h a t  
is, to explain why they are necessary. During the past 
decade it has become fashionable to describe cracking 
patterns in terms of fractal images. This tool is pleasing, 
but not predictive. 

Let us think freely about the most common example 
of patterned cracks. Wet soil exposed to the sun and the 
wind becomes drier, shrinks superficially, and develops 
a network of cracks. The loop in the network has a 
characteristic length scale. The loop is round, more 
like a hexagon or a square, not slender. The loop is 
smaller (i.e., cracks are denser) when the wind blows 
h a r d e r - - t h a t  is, when the drying rate is higher. 

These unexplained characteristics of mud cracks are 
hints that  their pattern is another natural occurrence 
of access optimization: the maximization of the mass 
transfer rate from the system (wet soil) to the ambient, 
or the minimization of the overall drying time. In 
view of the analogy between mass transfer and heat 
transfer, we can explore this theoretical route by 
considering the thermal analog sketched in figure 4. 
A one-dimensional solid slab of thickness L is initially 
at the high temperature TH, and has the property to 
shrink upon cooling. The coolant is a single-phase fluid 
of temperature TL. The question is how to maximize the 
thermal contact between the solid and the fluid or how to 
minimize the overall cooling time. The obvious 'design' 
is to allow the fluid to flow through the solid. In figure 
the cracks are spaced uniformly, but their spacing (R) 
is arbitrary. The channel width (D) increases in time, 
as each solid piece (R) shrinks. The fluid is driven by 

: D " R " 

T t 
coolant rn, TL, AP, Of, % ,  kf 

Figure 4, Channels in a shrinking solid cooled by single-phase 
fluid [1, 11]. 
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the pressure difference A p ,  which is main ta ined  across 
the solid thickness L. The  imposed A p  is an essential 
aspect  of the  channel spacing selection mechanism. For 
example,  in the air cooling of a hot  solid layer the scale 
of A P  is set at ( 1 / 2 ) p f U ~ ,  where p~ and U~ are the 
density and free-stream velocity of the external  air flow. 

To examine the effect of the channel spacing R on 
the t ime needed for cooling the solid, we consider the 
two asymptotes  R --* 0 and R -* oc. The approach is 
the same as in the geometric  opt imizat ion of electronic 
packages [7]. In other  words, electronic packages emerge 
as pa t te rns  of heat-generat ing blocks separated by 
op t ima l  cooling channels for the same reason tha t  
opt imal  pa t te rns  of cracks occur in nature.  This 
observation reinforces the commonal i ty  of na tura l  and 
man-made  pa t te rns  under constructal  theory. 

When  the number  of channels per  unit  length is 
large, the  spacing R is small  and so is the eventual 
shrinkage tha t  is experienced by each R element. This 
means tha t  when R --* 0 we can expect  D --* 0 and 
laminar  flow through each D-thin  channel, such tha t  the 
channel mass flowrate is ~n' = pr D U ~ pf D 3 A P /  (# L ). 
In the same limit, R is small enough so tha t  the 
solid conduction is described by the lumped thermal  
capaci tance model. The solid piece R is characterized 
by a single t empera tu re  T, which decreases in t ime from 
the initial  level TH to the  inlet t empera tu re  of the fluid 
TL. This cooling effect is governed by the energy balance 
p c R L  (dT/dt )  -- - q ' ,  where p and c are the density and 
specific heat  of the solid. The cooling effect (q') provided 
by the flow through the channel is represented well by 
q' = 7h' cp (T - TL), where cp is the specific heat  of the  
coolant. We obtain the  order of magni tude  s ta tement  
p c R L  (AT~t)  ~ Th'cp AT,  where A T  is the scale of the  
instantaneous solid excess t empera tu re  T - TL. Finally, 
by using the rh' scale, we find the cooling t ime scale 

t pc  t t R L  2 ( R ~ 0 )  (2) 
prcp D 3 A P  

In the opposite limit,  R is large and the shrinkage 
(the channel width D) is potent ia l ly  very l a r g e - - i n  
propor t ion to R. The fluid present at  one t ime in the 
channel is mainly isothermal  at the inlet t empera tu re  
TL. The cooling of each solid side of the  crack is ruled 
by one-dimensional thermal  diffusion into a semi-infinite 
medium. The cooling t ime in this regime is the same as 
the  t ime of thermal  diffusion over the distance R, 

R 2 
t ~ - -  ( R  ~ ~ )  ( 3 )  

O~ 

where a = k / (pc) ,  and k is the thermal  conduct ivi ty  
of the solid. To summarize,  in the  l imit  R ~ 0 the 
cooling t ime is propor t ional  to R / D  3 or R -2, because we 
expect  the propor t ional i ty  D / R  ~ ~ A T  < <  1, where 
A T  ~ T H -  TL, and /3 is the coefficient of thermal  
contract ion of the solid. In the  opposi te  limit, R ~ oo, 
the  cooling t ime is propor t ional  to R 2. Pu t  together,  
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these proport ional i t ies  suggest tha t  the  cooling t ime 
possesses a sharp min imum with respect to R or the 
channel density. Intersect ing the two asymptotes  we 
find tha t  the opt imal  crack distance (Ropt) for fastest 
cooling is of the order of: 

[k 11'° 
Ropt '~ kf U 2 (~ AT)  3 J (4) 

This result is promising for two fundamental  reasons, 
in addi t ion to the pract ical  aspect  of knowing how 
to ext rac t  heat  or mass from the hear t  of a solid 
in the  fastest way possible. One reason is tha t  
the opt imal  crack distance decreases as the external  
pressure (or flow) is intensified. This effect is in accord 
with numerous observations tha t  mud cracks become 
denser when the wind speed increases. This result,  in 
association with the  theoret ical  view tha t  na tura l  cracks 
occur such tha t  the cooling speed is maximized,  is the  
first t ime tha t  the effect of wind speed on crack densi ty 
is predicted.  The second reason is tha t  the  Ropt result 
predicts  a higher densi ty of cracks (a smaller Ropt) as 
the solid excess t empera tu re  A T  increases. This  t rend 
too is in agreement with observations, and it is being 
predicted for the first time. 

An impor tan t  geometric aspect  of the  Ropt scale is 
tha t  the opt imal  distance between consecutive cracks 
must  increase as L 1/2. This is relevant to predict ing the 
length scale of the lat t ice of vertical cracks formed in a 
horizontal  two-dimensional surface cooled (or dried) 
from above, under  the influence of external  forced 
convection. As the air flow direction changes locally 
from t ime to t ime,  and since the mater ia l  (its graininess) 
is such tha t  cracks may propagate  in more than  one 
direction, we arrive at the problem of cooling a two- 
dimensional ter ra in  (area A, when seen from above) 
with cracks of length L and associated area  elements of 
width  Ropt. 

Figure 5 shows the two extremes in which L may find 
itself in relat ion to /~opt. Firs t ,  when L is considerably 
shorter  than  Ropt it is impossible to cover the area A 

Ropl 

R~ 

(a) (b) 

L <:< Rop t L >> Rop t 

Figure 5. The two extremes in covering a two-dimensional 
solid (A) with cracks (L) and optimally cooled volume elements 
(L x Ropt) [1, 11]. 
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exclusively with patches of size L x Ropt. The reason is 
that  when two cracks of length L are joined at an angle, 
the elemental area (~ L 2) t rapped between them is 
too small to accommodate the amount of ideally cooled 
solid material. When L is considerably longer than 
Ropt, any lattice of cracks will fail to cover the area A 
completely. Now the t rapped elemental area (~ L ~) is 
considerably larger than the amount of ideally cooled 
solid (~  L Ropt). This means that  most of the interior 
of the area element of size L 2 would require a cooling 
time that  is considerably longer than the minimum time 
determined in the preceding analysis. 

In conclusion, to cool the entire solid (A) in the 
fastest way possible is to cover the A cross section with 
L x Ropt elements, in which L ~ R o p t .  The optimal 
pattern is one with relatively ' round'  or 'square' loops, 
not slender loops. Combining L ~ Ropt with the Ropt 
expression we find the optimal length scale of the loop in 
the network of cracks that  will minimize the cooldown 
time: Ropt "~ (C[f/2 k/]cf)l/2/[Voo (~ AT)3/2]. Once again, 
in agreement with observations, we see that  the lattice 
length scale Ropt must decrease as the wind speed and 
the initial excess temperature increase. 

7. CLUMPS OF SOLID SPREADING 
THROUGH A FLUID MEDIUM 

As an invitation in yet another direction of inquiry, 
let us ask why solid matter  travels in large clumps 
through a fluid medium [1]. Why does it not travel as a 
swarm of very small granules? Why  do celestial bodies 
form in time? Consider two granules for example, 
two spheres of diameter D1 and density p, such that  
their total mass is rn = 2 p ( n / 6 ) D  3. The drag force 
felt by each ball is FD = CD (re/4) D12 (1/2) pf U 2, where 
rf is the density of the medium (e.g., gas) tha t  fills 
the space, and U is the relative velocity between ball 
and medium. For simplicity, assume that  the Reynolds 
number is sufficiently large such that  the drag coefficient 
CD is almost constant and of order 1. In conclusion, 
the drag force experienced by the total mass m is 
F1 = 2 FD = (~/4) CD D 2 pf U 2. 

Can the two masses reduce their resistance to travel? 
In other words, can the solid spread faster and farther 
through the fluid medium? Yes. Two balls fused into 
one larger ball encounter a smaller resistance than when 
they travel separately. Mass conservation dictates that  
the diameter of the larger ball is D2 = 21/3 D1. The drag 
force on this larger ball, F2 = CD (re/4)D~ (1/2)pe U ~ 
is sensibly smaller than in the original configuration, 
F2/F1 = 2 -1/3 = 0.794. Given enough time, two 
neighboring masses should coalesce into a larger mass. 

8. THREE-DIMENSIONAL TREE NETWORKS 
AND ANGLED TRIBUTARIES 

The key aspect of the work reviewed in § 1-7 is 
the enormous number of natural examples, and the 
surprising diversity of the geometric flow structures 
tha t  can be predicted based on constructal theory. I 
am sure that  even more surprises are in store, that  
is, if we are willing to take an unbiased look at some 
of the unexplained and unquestioned forms of natural 
organization. The fields of physiology and geophysics 
are covered by such forms. 

The reviewed work 'extended'  constructal theory 
beyond the volume-to-point flows (tree networks) that  
got the idea started. The trees were deduced in 
two dimensions, as paths of minimum resistance to 
volume-constrained flows. The work on tree networks 
continued [12-15] with the objective of generalizing and 
communicating it to the physics community. 

Several new developments on constructal trees 
are worth noting. The optimization of access was 
demonstrated in three dimensions, by minimizing the 
resistance to fluid flow [12], and by minimizing the time 
of travel between an entire volume and one point [13]. 
The latter also showed that  it is possible to optimize the 
angles between tributaries and collecting path (street) 
in each new assembly. In the original work [1] on two- 
dimensional heat trees, fluid trees and street trees, 
the tributaries were assumed perpendicular to each 
collecting stream. It was shown through computer- 
based optimization that the angle optimization has 
only a minor effect on the minimized overall resistance 
of the system [15]. 

The initial work [1] was also based on the assumption 
that  the flow can exist in two regimes, one with high 
resistivity at the elemental level, and the other with 
a considerably lower resistivity in the collecting paths 
of the constructs. The generalization that  was just 
communicated [13, 14] is based on allowing any number 
of flow regimes, provided that  number is greater than 1. 
For example, in the minimization of travel time between 
a volume and one point [13] the unspecified flow regimes 
are the unspecified speeds of travel along the central 
streets of the constructs. In the minimization of flow 
resistance between a heterogeneous porous medium 
and one point [14] the unspecified flow regimes are 
represented by the unspecified Darcy-flow permeabilities 
of the central paths (e.g., cracks) of the constructs. If 
the given volume can be covered with an assembly 
of order n, then the number of different flow regime 
(resistivities) is n + 1. 

These theoretical developments and the older work 
on volume-to-point flows [1] remind us tha t  a natural 
tree network is more than a 'stick drawing' that  connects 
a root point with an area or volume. First, most of 
the tree is 'empty' ,  without visible links (branches, 
tributaries). You can see through the tree. Second, links 
cannot be smaller than a characteristic length scale: 
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the number of stages of coalescence is finite. Third, 
the links tha t  are closer to the root point are thicker. 
Fourth, the thicker links bifurcate or, when seen coming 
from the other direction, they coalescence into pairs. 
The integer 2, which stands for bifurcation or pairing 
(or dichotomy), is a defining characteristic of natural 
tree networks at higher levels of coalescence. 

It is worth repeating that  the constructal theory of 
volume-to-point flow [1, 2] began with the optimization 
of the smallest volume of known size, where volumetric 
flow ("diffusion") coexists with the first organized flow: 
the first channel, duct, or rivulet. This observation 
is particularly important in river morphology. It is 
hard to see such small "first rivulets" in nature, or 
even in controlled rain-erosion experiments. This is 
one reason why it has become fashionable to simulate 
drainage networks based on fractal algorithms, i.e., to 
assume that  certain (postulated) similarity rules repeat 
themselves ad infinitum all the way to river links of 
size zero. In reality, the finite-size elemental areas and 
the birth of the first rivulets can be watched "live" in 
drinking cups coated with wet sediment from unfiltered 
coffee. 

The common features of natural tree networks refute 
the notion that  such patterns are fractals. Recall that  
the infinite sequence of fracturing steps is the defining 
statement of a fractal (ref. [17], p. 15): the noneuclidean 
dimension (Hansdorff) exists strictly in this limit, at 
infinity. When the sequence is cut off (quite arbitrarily) 
and made finite, the incomplete (i.e., euclidean; ref. [17], 
p. 39) images drawn on paper happen to look like 
patterns that  we see in nature. This coincidence does 
not mean that  natural tree patterns are fractal. The 
contrary is true: Everything shown to us by nature, and 
everything done by the fractal algorithm manipulator, 
supports the view that  the real image is euclidean. 
This is why the natural image can be distinguished by 
the human eye, because otherwise we would be seeing 
nothing but blurred images and shades of gray. 

ConstructM theory is supported by the crisp eucli- 
dean images of natural fluid trees that  we see. The rea- 
son is that  the theory starts from the smallest (known, 
finite) scale, continues as a finite sequence of optimal 
assemblies, and displays its predictions in two or three 
dimensions. Along the way, the derived sequence of 
constructs also explains why the incomplete sequences 
assumed by the mathematician happen to look like 
natural patterns. 

9. ECONOMICS STRUCTURE IN SPACE 

The deterministic power of the constructal principle 
stretches beyond engineering, physics and biology. The 
extension to economic structure in space was noted in 
ref. [1], and is worth emphasizing. Consider the economic 
activity that  covers a given area. The economic activity 
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is the optimization principle, and the structure that  
covers the area is its result. To see how constructal 
theory explains the origin of structure in economics 
and business, consider a stream of goods that  proceeds 
from one point (producer, or factory) to every point of 
a finite-size territory (consumers). The flow may also 
proceed in the opposite direction (e.g., grain, carpets 
woven by individuals). The objective is to minimize the 
total cost associated with the given stream. 

The economies of scale principle tells us that  the unit 
cost is lower when the goods move in the aggregate, 
i.e., when they are organized into thicker streams. The 
unit cost is also proportional to the distance traveled. 
Clearly, the unit cost plays exactly the same role as 
the local thermal resistance in heat trees, or the local 
fluid-flow resistance in fluid trees, or the inverse of 
the travel speed in street trees. The given territory 
is covered naturally by links of decreasing unit cost, 
starting from the highest unit cost which is allocated to 
the smallest area scale (the individual), and continuing 
with a sequence of intermediaries (distributors) who 
handle increasingly larger fractions of the given stream 
of goods. 

10. CONSTRUCTAL LAW: 
THE GENERATING PRINCIPLE 
FOR GEOMETRIC FORM IN NATURE 

In summary, it is possible to deduce from a single 
statement the shapes of the enormous number of 
structures of natural systems with internal flows. This 
'constructal '  law can be stated as follows: for a finite- 
size open system to persist in time, its configuration 
must evolve in time in such a way that  it provides 
easier access to the imposed currents that  flow through 
it [1, 2]. This statement has two parts. The first 
recognizes the natural tendency of imposed currents 
to construct shapes, i.e. paths of optimal access through 
constrained open systems. The second part  accounts for 
the evolution (i.e., improvements) of these paths, which 
occurs in an identifiable direction that  can be aligned 
with time itself. 

This formulation of the law refers to a system 
with imposed steady flow, as in most of the examples 
reviewed in this article. If the system discharges itself 
to one point in unsteady fashion, then the geometric 
minimization of volume-to-point resistance is equivalent 
to the minimization of the time of discharge, or the 
maximization of the speed of approach to equilibrium 
(uniformity, zero flow, death) [16, 18]. If the volume is 
unbounded, the constructs compound themselves and 
continue to spread indefinitely, even in three dimensions 
[19]. Complexity continues to increase in time. 

The constructal law defines the concept of necessity, 
purpose, or optimization. This law is about macroscopic 
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structure. It addresses very old questions that cannot be 
answered based on known laws: Why should a natural 
system be optimized? Why should a system be better, or 
'more fit' than another (faster, farther, easier, cheaper, 
etc.)? Why should a system be the 'survivor'? The 
demonstrated deterministic power of this principle is 
an invitation to re-examine the classical problems that 
have evaded determinism in the past. 
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